Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(geq(X1, X2)) → A__GEQ(X1, X2)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(geq(X1, X2)) → A__GEQ(X1, X2)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(A__GEQ(x1, x2)) = x_2   
POL(s(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(A__MINUS(x1, x2)) = x_2   
POL(s(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(if(X1, X2, X3)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
The remaining pairs can at least be oriented weakly.

MARK(div(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__IF(false, X, Y) → MARK(Y)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
Used ordering: Polynomial interpretation [25,35]:

POL(A__IF(x1, x2, x3)) = x_2 + (1/4)x_3   
POL(a__geq(x1, x2)) = 0   
POL(minus(x1, x2)) = 0   
POL(true) = 0   
POL(geq(x1, x2)) = 0   
POL(mark(x1)) = 0   
POL(a__minus(x1, x2)) = 0   
POL(0) = 0   
POL(MARK(x1)) = (1/4)x_1   
POL(if(x1, x2, x3)) = 1/2 + x_1 + (4)x_2 + (4)x_3   
POL(div(x1, x2)) = (2)x_1   
POL(A__DIV(x1, x2)) = 0   
POL(false) = 0   
POL(s(x1)) = (4)x_1   
POL(a__if(x1, x2, x3)) = 0   
POL(a__div(x1, x2)) = 0   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
Used ordering: Polynomial interpretation [25,35]:

POL(A__IF(x1, x2, x3)) = (1/4)x_2 + (1/2)x_3   
POL(a__geq(x1, x2)) = 0   
POL(minus(x1, x2)) = 0   
POL(true) = 0   
POL(geq(x1, x2)) = 0   
POL(mark(x1)) = (4)x_1   
POL(a__minus(x1, x2)) = 0   
POL(0) = 0   
POL(MARK(x1)) = (1/4)x_1   
POL(if(x1, x2, x3)) = (4)x_2 + (4)x_3   
POL(div(x1, x2)) = (4)x_1   
POL(A__DIV(x1, x2)) = (1/4)x_1   
POL(false) = 0   
POL(s(x1)) = 1/4 + x_1   
POL(a__if(x1, x2, x3)) = (4)x_2 + (4)x_3   
POL(a__div(x1, x2)) = (4)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented:

a__if(X1, X2, X3) → if(X1, X2, X3)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(0, s(Y)) → false
a__geq(X, 0) → true
a__div(0, s(Y)) → 0
a__geq(s(X), s(Y)) → a__geq(X, Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
a__if(false, X, Y) → mark(Y)
a__if(true, X, Y) → mark(X)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(0) → 0
mark(true) → true
mark(s(X)) → s(mark(X))
a__minus(X1, X2) → minus(X1, X2)
mark(false) → false



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(div(X1, X2)) → MARK(X1)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
The remaining pairs can at least be oriented weakly.

A__IF(false, X, Y) → MARK(Y)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
Used ordering: Polynomial interpretation [25,35]:

POL(A__IF(x1, x2, x3)) = (1/4)x_2 + x_3   
POL(a__geq(x1, x2)) = 0   
POL(minus(x1, x2)) = 0   
POL(true) = 0   
POL(geq(x1, x2)) = 0   
POL(mark(x1)) = 0   
POL(a__minus(x1, x2)) = 0   
POL(0) = 0   
POL(MARK(x1)) = (1/4)x_1   
POL(if(x1, x2, x3)) = 0   
POL(div(x1, x2)) = 1/4 + x_1   
POL(A__DIV(x1, x2)) = 0   
POL(false) = 0   
POL(s(x1)) = 0   
POL(a__if(x1, x2, x3)) = 0   
POL(a__div(x1, x2)) = 0   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__IF(false, X, Y) → MARK(Y)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)

The TRS R consists of the following rules:

a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 3 less nodes.